

Miguel Angel Alvarez Aquino

Desenvolvimento de um queimador de gás natural para estudos da combustão em escoamentos turbulentos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Luis Fernando Alzuguir Azevedo Co-Orientador: Prof. Luis Fernando Figueira da Silva

Rio de Janeiro, Dezembro de 2006

Miguel Angel Alvarez Aquino

Desenvolvimento de um queimador de gás natural para estudos da combustão em escoamentos turbulentos

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Engenharia Mecânica pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Luis Fernando Alzuguir Azevedo Orientador Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Luis Fernando Figueira da Silva Co-Orientador Departamento de Engenharia Mecânica – PUC-Rio

> Prof. Marcos Sebastião de Paula Gomes Departamento de Engenharia Mecânica – PUC-Rio

> > Prof. Pedro Teixeira Lacava Departamento de Propulsão IEAC – ITA

Prof. Ângela Ourivio Nieckele Departamento de Engenharia Mecânica – PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 14 de Dezembro de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Miguel Angel Alvarez Aquino

Graduou-se em Engenharia Mecânica e Elétrica na Universidad Nacional de Ingeniería – UNI, no Peru em 2000. Possui experiência profissional como Engenheiro de Planta Industrial na área de Operações e Manutenção em Usinas Termoelétricas, além de ter desenvolvido e executado projetos de instalação, operação e manutenção de equipamentos eletromecânicos referidos a sistemas termodinâmicos de caldeiros industriais e turbinas de vapor.

Ficha Catalográfica

Alvarez Aquino, Miguel Angel

Desenvolvimento de um queimador de gás natural para estudos da combustão em escoamentos turbulentos / Miguel Angel Alvarez Aquino ; orientador: Luis Fernando Alzuguir Azevedo ; co-orientador: Luis Fernando Figueira da Silva. – 2006.

155 f. : il. ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2006.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Queimador de gás natural. 3. Corpo rombudo. 4. Velocimetria. 5. Laser. 6. Doppler. 7. Imagem. 8. Partículas. I. Azevedo, Luis Fernando Alzuguir. II. Silva, Luis Fernando Figueira da. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

Para minha mãe Maria e meu irmão Jorge, pelo apoio, estímulo e confiança depositada à distância.

Agradecimentos

Gostaria de agradecer a todas as pessoas que fizeram possível a elaboração deste trabalho, em especial:

À minha família, à minha mãe Maria e meu irmão Jorge, pelo apoio e incentivo incondicional para realizar este curso de mestrado.

Aos professores Luis Fernando F. da Silva e Luis Fernando A. Azevedo pela dedicada orientação no desenvolvimento desta dissertação e pelo apoio durante o curso de mestrado.

Aos Professores membros da banca, pelos comentários e sugestões feitas.

Aos professores do Departamento de Engenharia Mecânica da PUC-Rio, pelos momentos compartilhados e conselhos a nível acadêmico.

Aos meus amigos e colegas do Departamento de Engenharia Mecânica da PUC-Rio, e em especial a Julio M. Barros pelo apoio no laboratório de Termociências.

À CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Alvarez Aquino, Miguel Angel; Azevedo, Luis Fernando Alzuguir; Silva, Luis Fernando Figueira da. **Desenvolvimento de um queimador de gás natural para estudos da combustão em escoamentos turbulentos**. Rio de Janeiro, 2006. 155p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho apresenta-se um estudo experimental de escoamentos turbulentos quimicamente inertes e reativos em um queimador tipo obstáculo. O objetivo principal é a caracterização do escoamento através da obtenção do campo de velocidade instantâneo utilizando técnicas óticas não intrusivas. As técnicas empregadas foram a Velocimetria Laser Doppler (LDV) e a Velocimetria por Imagem de Partículas (PIV), as quais possibilitaram a medição das componentes transversal e longitudinal da velocidade do escoamento em estudo. Os resultados experimentais obtidos foram comparados com aqueles oriundos da simulação numérica usando um programa computacional existente. São analisados os acordos e as discrepâncias obtidas, colocando-se em evidência a capacidade e as limitações de cada uma das técnicas utilizadas.

Palavras-chave

Queimador Gás Natural; Corpo Rombudo; Velocimetria; Laser; Doppler; Imagem; Partículas.

Abstract

Alvarez Aquino, Miguel Angel Azevedo, Luis Fernando Alzuguir (Advisor); Silva, Luis Fernando Figueira da (Co-Advisor). **Development of a natural gas burner for the studies of combustion in turbulent flows.** Rio de Janeiro, 2006. 155p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

This work presents an experimental study of chemically inert and reactive turbulent flows in a Bluff-Body burner. The main objective is the characterization of the flow through of the measurement of instantaneous velocity fields by using non intrusive optical techniques. The techniques employed were Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV), which makes possible the measurement of the transversal and longitudinal components of the flow velocity. The experimental results were compared with those obtained from a numerical simulation using a comercial computational program. The agreements and discrepancies obtained between the two experimental techniques and from experiments and computation were demonstrated and analized.

Key Words

Natural Gas Burner; Bluff Body; Velocimetry; Laser; Doppler; Particle; Imaging.

Sumário

PUC-Rio - Certificação Digital Nº 0421074/CB

1. Introdução	21
2. Considerações teóricas e revisão bibliográfica	26
2.1. Estudo dos escoamentos de jato livre	26
2.2. Revisão bibliográfica	28
3. Metodologia experimental	43
3.1. Projeto da instalação experimental	43
3.1.1. Sistema de alimentação de gás natural (GNV) e Nitrogênio	49
3.1.2. Sistema de alimentação de ar	50
3.1.3. Sistema de controle do processo: equipamentos e medidores	52
3.1.4. Sistema de geração das partículas traçadoras	55
3.1.5. Sistema de exaustão de gases poluentes	58
3.1.6. Sistema do queimador e túnel de vento	60
3.1.7. Sistemas laser de medição não intrusiva	60
3.2. Velocimetria Laser Doppler – LDV	63
3.2.1. Componentes principais do sistema LDV	64
3.2.2. Características ópticas do volume de medição	66
3.2.3. Procedimento experimental para medição LDV	70
3.2.4. Análise de incertezas experimentais	73
3.2.4.1. Definição e classificação das incertezas experimentais	73
3.2.4.2. Incerteza dos resultados e sua propagacao	75
3.2.4.3. Incertezas da instalação experimental usando LDV	76
3.2.4.3.1. Fontes de incerteza sistemática da instalação experimental	76
3.2.4.3.2. Fontes de incerteza aleatória da instalação experimental	77
3.2.4.4. Procedimento de cálculo das incertezas experimentais	78
3.2.4.4.1. Determinação da incerteza do número de Reynolds	
experimental	79

3.2.4.4.2. Determinação da incerteza da velocidade média e

intensidade turbulenta	81
3.3. Velocimetria por imagem de partículas (PIV)	82
3.3.1. Definição do principio de operação	82
3.3.2. Principais componentes do PIV	84
3.3.2.1. Sistema de iluminação	85
3.3.2.2. Sistema de captação de imagens	87
3.3.2.3. Sistema de análise, processamento e visualização de dados	88
3.3.3. Procedimento experimental para medição PIV	88
3.3.4. Pós-processamento do campo de velocidade	92
4. Metodologia numérica	94
4.1. Dominio e malha computacional utilizado	94
4.2. Formulação dos modelos matemáticos utilizados	97
4.2.1. Equações básicas de conservação	97
4.2.2. Equações básicas para modelagem da turbulência	98
4.2.2.1. Modelo de turbulência k-ε	101
4.2.2.2. Modelo de turbulência Transporte de Tensão Cisalhante-SST	101
4.3. Condições de contorno e iniciais	102
4.4. Metodologia numérica de discretização da malha	103
5. Análise de resultados e discussões	105
5.1. Caracterização e visualização do escoamento	106
5.2. Resultados experimentais obtidos com a técnica de medição LDV	112
5.2.1. Escoamento de jato livre	113
5.2.2. Escoamento de jato com obstáculo	118
5.3. Resultados experimentais obtidos com a técnica de medição PIV	122
5.4. Resultados da simulação numérica	130
5.4.1. Simulação numérica do jato livre	131
5.4.2. Simulacao numérica do jato com obstáculo	134
5.5. Análise comparativa do escoamento com obstáculo	136
5.5.1. Distribuição longitudinal da velocidade média e intensidade	
turbulenta ao longo do eixo de simetria	137
5.5.2. Distribuição radial da velocidade média e intensidade turbulenta	l

para diversos deslocamentos longitudinais	140
6. Conclusões e perspectivas	150
7. Referências bibliográficas	154

Lista de figuras

Figura 1.1 - Fotografia do queimador tipo obstáculo, operando em	
regime turbulento com velocidade média do jato central de GNV de	
51 m/s (Re=7235) e do ar anular de 1,5 m/s.	22
Figura 1.2 - Resultados experimental e numérico das zonas	
encontradas em chamas turbulentas estabilizadas em queimadores	
tipo obstáculo [7].	23
Figura 1.3 - Representação esquemática do queimador tipo obstáculo	
com uma chama turbulenta livre [10].	24
Figura 2.1 - Imagens de concentração de um jato turbulento:	
(a) Re=5000 e (b) Re=2000, usando a técnica de dispersão	
de Mie [21].	26
Figura 2.2 - Jato livre axi-simétrico se propagando num meio	
constituído pelo mesmo fluido produzindo o efeito "entrainment".	27
Figura 2.3 - Campo vetorial de velocidade média para: (a) inerte e	
(b) reativo, segundo estudo de Schefer et al. [26]	32
Figura 2.4 - Distribuição instantânea de partículas de alumina	
inseridas no jato central estabilizado, para escoamentos com	
obstáculo: (a) inerte e (b) reativo [26].	33
Figura 2.5 - Distribuição instantânea de partículas de alumina	
inseridas no jato central, para chamas de: (a) jato livre e (b) jato com	
obstáculo [27].	34
Figura 2.6 - Comparação esquemática da interação entre o jato	
central e o vórtice conduzido de ar em escoamentos de chamas	
dominadas pelo jato central para queimadores tipo: (a) obstáculo e	
(b) ciclone [7].	36
Figura 2.7 - Representação comparativa da interação de chamas	
fortemente recirculantes entre o jato central e o vortice conduzido de	
ar em queimadores tipo: (a) obstáculo e (b) ciclone [7].	36
Figura 2.8 - Esquema da instalação confinada, condicões de ingresso	
e regiões da chama estudada no trabalho experimental e numérico de	

Correa et al. [7].	37
Figura 2.9 - Regiões da chama turbulenta não pré-misturada	
observadas no estudo experimental de Dally et al. [10].	41
Figura 3.1 - Diagrama da seção transversal do queimador mostrando	
as características geométricas de construção.	44
Figura 3.2 - Principais componentes da instalação experimental.	48
Figura 3.3 - Vista frontal da montagem do painel do sistema de	
suprimento e controle de gás (GNV e Nitrogênio).	50
Figura 3.4 - Sistema de suprimento de ar anular usando ventilador	
modelo Sirocco.	51
Figura 3.5 - Painel de controle dos equipamentos.	52
Figura 3.6 - Painel de controle do escoamento: medidores analógicos.	53
Figura 3.7 - Diagrama elétrico do painel de controle.	55
Figura 3.8 - Gerador de partículas de óleo tipo "Laskin Nozzle"[22].	56
Figura 3.9 - Fotografia do resultado da granulometria MEV das	
partículas de TiO ₂ feita pelo Laboratório de Ensaios de Materiais	
da UNPA - CT Gás.	57
Figura 3.10 - Cilindro de Polipropileno tipo ciclone para suprimento	
das partículas traçadoras ao processo.	58
Figura 3.11 - Montagem do sistema de exaustão de gases poluentes.	59
Figura 3.12 - Vista da seção transversal da montagem do queimador	
e túnel de vento.	60
Figura 3.13 - Vista geral da instalação experimental para medição	
LDV.	62
Figura 3.14 - Representação esquemática do principio básico de	
funcionamento do sistema LDV.	63
Figura 3.15 - Esquema de identificação dos componentes do sistema	
LDV [13].	65
Figura 3.16 - Definição das principais características ópticas de feixes	
laser LDV [14].	67
Figura 3.17 - Esquema de deslocamento de franjas no volume de	
medição da técnica de freqüência de desvio (Frequency shift) no	
sistema LDV [13].	68

Figura 3.18 - Definição esquemática da incerteza total de medição δ_i ,	
associada a uma grandeza X e composta por uma parcela aleatória $\epsilon_{\rm i}$	
e outra sistemática β .	74
Figura 3.19 - Principio de medição do campo de velocidade usando a	
técnica laser PIV.	83
Figura 3.20 - Esquema de funcionamento do sistema de medição PIV.	84
Figura 3.21 - Principais componentes do sistema PIV montado na	
instalação experimental.	85
Figura 3.22 - Geometria do plano de luz formado pelas lentes [2].	86
Figura 3.23 - Diagrama de sincronização da camêra PIVCAM 10-30 e	
Power View Plus 4 MP com atirador de dobro exposição.	87
Figura 3.24 - Imagem das partículas traçadoras seguindo ao	
escoamento de jato com obstáculo obtida na medida PIV.	90
Figura 4.1 - Dominio computacional e condições de contorno.	96
Figura 4.2 - Malha computacional refinada na região próxima á fase	
do queimador.	96
Figura 5.1 - Instalação experimental usando a técnica LDV.	107
Figura 5.2 - Instalação experimental usando a técnica PIV.	107
Figura 5.3 - Visualização do plano central do escoamento por	
dispersão Mie, utilizando como traçador gotas de óleo apenas na	
região anular de 1 μm de diâmetro.	108
Figura 5.4 - Visualização do plano central do escoamento por	
dispersão Mie, utilizando partículas traçadoras no jato central e no ar	
anular.	108
Figura 5.5 - Imagens do queimador em regime laminar de combustão,	
jato livre operando com número de Reynolds do GNV de (a) 1116,	
(b) 2260 e (c) 3425.	110
Figura 5.6 - Imagens do queimador em regime turbulento de	
combustão, jato livre operando com número de Reynolds do GNV de	
(a) 4667, (b) 5900 e (c) 7212.	111
Figura 5.7 - Imagens do queimador em regime laminar de combustão,	
jato central e ar anular operando com número de Reynolds do GNV	
de (a) 1105, (b) 2233 e (c) 3420.	111

Figura 5.8 - Imagens do queimador em regime turbulento de	
combustão, jato central e ar anular operando com número de	
Reynolds do GNV de (a) 4660, (b) 5917 e (c) 7235.	112
Figura 5.9 - Posicionamento do volume de medição no plano	
axi-simétrico em X/D _j =1, usando a evolução da velocidade média	
longitudinal (U) nos eixos radiais r e r'.	113
Figura 5.10 - Evolução da velocidade média longitudinal (U) ao longo	
da direção longitudinal.	114
Figura 5.11 - Distribuição radial de velocidade média na direção	
longitudinal (U) para diferentes valores da coordenada longitudinal.	115
Figura 5.12 - Distribuição radial de velocidade média na direção	
transversal (V) para diferentes valores da coordenada longitudinal.	116
Figura 5.13 - Distribuição radial da intensidade turbulenta na direção	
longitudinal (u'/U_j) para diferentes valores da coordenada longitudinal.	117
Figura 5.14 - Distribuição radial da intensidade turbulenta na direção	
transversal (v'/Uj) para diferentes valores da coordenada longitudinal.	117
Figura 5.15 - Posicionamento do volume de medição no plano	
axi-simétrico em X/D _j =1, usando a evolução da velocidade média	
longitudinal (U) nos eixos radiais r e r'.	118
Figura 5.16 - Comparação da evolução da velocidade média	
longitudinal (U) ao longo da direção longitudinal do escoamento do	
jato com obstáculo e do jato livre.	119
Figura 5.17 - Distribuição radial de velocidade média na direção	
longitudinal (U) para diferentes valores da coordenada longitudinal.	120
Figura 5.18 - Distribuição radial de velocidade média na direção	
transversal (V) para diferentes valores da coordenada longitudinal.	120
Figura 5.19 - Distribuição radial da intensidade turbulenta na direção	
longitudinal (u'/U _j) para diferentes valores da coordenada longitudinal.	121
Figura 5.20 - Distribuição radial da intensidade turbulenta na direção	
transversal (v') para diferentes valores da coordenada longitudinal.	122
Figura 5.21 - Campo instantâneo de vetores velocidade para um	
intervalo de tempo entre pulsos (Δ T): (a) 5 μ s e (b) 80 μ s.	123
Figura 5.22 - Contornos do módulo da velocidade média (m/s) com	

linhas de corrente para o escoamento do jato com obstáculo,	
Re=3970.	124
Figura 5.23 - Contornos de velocidade média transversal – V (m/s),	
Re=3970.	126
Figura 5.24 - Contornos de velocidade turbulenta r.m.s. na direção	
longitudinal – u' (m/s), com Δ T=5 μ s e Re=3970.	126
Figura 5.25 - Contornos de velocidade turbulenta r.m.s. na direção	
transversal – v' (m/s), com ∆T=5 μs e Re=3970.	127
Figura 5.26 - Distribuição radial de velocidade média na direção	
longitudinal (U) para diferentes valores da coordenada longitudinal e	
ΔT=5 μs.	128
Figura 5.27 - Distribuição radial de velocidade média na direção	
transversal (V) para diferentes valores da coordenada longitudinal e	
ΔT=80 μs.	128
Figura 5.28 - Distribuição radial da intensidade turbulenta na direção	
longitudinal (u'/U _i) para diferentes valores da coordenada longitudinal	
e ΔT=5 μs.	129
Figura 5.29 - Distribuição radial da intensidade turbulenta na direção	
transversal (v'/U _j) para diferentes valores da coordenada longitudinal	
e ΔT=5 μs.	130
Figura 5.30 - Histórico de convergência de valores RMS do resíduo	
das equações de transporte de massa e de quantidade de momento	
para jato livre inerte.	131
Figura 5.31 - Histórico de convergência de valores RMS do resíduo	
das equações do modelo de turbulência SST para jato livre inerte.	132
Figura 5.32 - Linhas de corrente baseadas na velocidade média no	
caso do escoamento para jato livre inerte.	133
Figura 5.33 - Vetores velocidade média para jato livre inerte.	133
Figura 5.34 - Histórico de convergência de valores RMS do resíduo	
das equações de transporte de massa e de quantidade de momento	
para jato inerte com obstáculo.	134
Figura 5.35 - Histórico de convergência de valores RMS do resíduo	
das equações do modelo de turbulência SST para jato inerte com	

obstáculo.	135
Figura 5.36 - Linhas de corrente baseadas na velocidade média no	
caso do escoamento para jato inerte com obstáculo.	135
Figura 5.37 - Vetores velocidade média para jato inerte c/obstáculo.	136
Figura 5.38 - Comparação da evolução da velocidade média	
longitudinal (U) ao longo da direção longitudinal.	137
Figura 5.39 - Comparação da evolução da intensidade turbulenta na	
direção longitudinal (u'/U _j) ao longo da direção longitudinal.	138
Figura 5.40 - Comparação da evolução da intensidade turbulenta na	
direção transversal (v'/U _j) ao longo da direção longitudinal.	139
Figura 5.41 - Comparação de resultados PIV, LDV e CFD das	
distribuições radiais da velocidade média longitudinal (U/U _j) para	
diferentes deslocamentos longitudinais (x/Dj).	141
Figura 5.42 - Comparação de resultados PIV, LDV e CFD das	
distribuições radiais da velocidade média transversal (V/U _j) para	
diferentes deslocamentos longitudinais (x/Dj).	143
Figura 5.43 - Comparação de resultados PIV, LDV e CFD das	
distribuições radiais da intensidade turbulenta longitudinal (u'/U _j) para	
diferentes deslocamentos longitudinais (x/Dj).	145
Figura 5.44 - Comparação de resultados PIV, LDV e CFD das	
distribuições radiais da intensidade turbulenta transversal (v'/U _j) para:	
(a) x/D _j =1, (b) x/D _j =5, (c) x/D _j =10, (d) x/D _j =15 e (e) x/D _j =20.	147

Lista de tabelas

Tabela 2.1 - Tabela cronológica de referências bibliográficas dos	
principais estudos desenvolvidos sobre escoamentos turbulentos em	
queimadores tipo obstáculo.	30
Tabela 3.1 - Estimação dos regimes de operação do jato central de	
GNV.	45
Tabela 3.2 - Regimes de operação de o ar anular fornecido pelo	
ventilador.	46
Tabela 3.3 - Diferenças entre as duas técnicas de medição laser.	62
Tabela 3.4 - Características óticas das lentes e do volume de medição	
do laser LDV.	72
Tabela 3.5 - Valores de configuração das freqüências de desvio radial	
(Fs-r) dos feixes laser de cor verde no caso de jato livre.	73
Tabela 3.6 - Tamanhos das janelas de correlação cruzada usadas	
para o processamento das imagens, com deslocamento máximo de	
8 pixels.	91
Tabela 4.1 - Resumo das configurações realizadas nas condições de	
contorno com o software CFX10.	103
Tabela 5.1 - Regimes de operação do queimador em presença de	
combustão.	109

Nomenclatura

a	Excesso de ar
b	Largura transversal do jato livre [m]
C_{μ}	Constante do modelo de turbulência κ-ε
C_V	Calor especifico a volume constante $[m^2/s^2-K]$
d	Distância de espaçamento entre feixes [m]
d_{f}	Espaçamento das franjas [m]
dx	Deslocamento da partícula na direção x no sistema PIV [m]
dy	Deslocamento da partícula na direção y no sistema PIV [m]
D	Diâmetro de saída [m]
D' _{e-2}	Diâmetro do feixe laser [m]
D _B	Diâmetro do queimador tipo obstáculo [m]
D _C	Diâmetro do duto circular [m]
D_m	Diâmetro médio do volume de medição [m]
ei	Energia interna especifica [kJ/kg]
f	Comprimento focal da lente [m]
Fs	Freqüência de desvio do laser [Hz]
Fo	Freqüência Doppler da partícula [Hz]
Н	Entalpia total especifica [kJ/kg]
k	Energia cinética turbulenta [m ² /s ²]
L	Comprimento de mistura turbulenta [m]
L _C	Comprimento característico do movimento turbulento [m]
L _m	Comprimento médio do volume de medição [m]
<i>m</i>	Vazão mássica [kg/s]
Ν	Número total de ciclos da partícula
N_1	Número efetivo de franjas atravessando a partícula
N_{F}	Número de franjas no volume de medição
N _{FR}	Número máximo de franjas
N _T	Tamanho da amostra
Р, р	Pressão manométrica [Pa]
p´	Pressão modificada [Pa]

P _c	Potência máxima do queimador [kW]
Pr _t	Número de Prandtl turbulento
PCs	Poder calorífico superior do combustível GNV [kJ/kg]
\vec{q}	Vetor fluxo de calor [kW/m ²]
r	Coordenada radial ou transversal [m]
r'	Coordenada radial ortogonal a r [m]
R	Relação empírica resultante de medição
R _g	Constante universal dos gases [kJ/kmol-K]
Re	Número de Reynolds
t	Tempo [s]
ts	Parâmetro para distribuição Student
Т	Temperatura [K]
T _t	Tempo de tránsito da partícula no volume de medição [s]
Х	Coordenada longitudinal [m]
u	Flutuação da velocidade na direção longitudinal [m/s]
u', u _{rms}	Velocidade longitudinal turbulenta r.m.s. [m/s]
u _o '	Velocidade longitudinal turbulenta r.m.s. na linha de centro
U	Velocidade média de saída [m/s]
\vec{u}	Vetor velocidade [m/s]
Ua	Velocidade média do ar anular [m/s]
\overline{U}	Velocidade média longitudinal [m/s]
$\overline{U_o}$	Velocidade média longitudinal na linha de centro [m/s]
V	Flutuação da velocidade na direção transversal [m/s]
v', v _{rms}	Velocidade transversal turbulenta r.m.s. [m/s]
\dot{V}	Vazão volumétrica [m ³ /s]
\overline{V}	Velocidade média transversal [m/s]
V _C	Velocidade característica do movimento turbulento [m/s]
Vo	Velocidade genérica da partícula no volume de medição
W	Flutuação da velocidade na direção circunferencial [m/s]
\overline{W}	Velocidade média circunferencial [m/s]
Х	Variável ou grandeza medida

Letras gregas

β	Erro sistemático ou fixo
δ_i	Incerteza total de medição
δ_{ij}	Delta de Kronecker
Δx_i	Posição do volume de medição [m]
$\Delta t, \Delta T$	Tempo entre dois pulsos laser [s]
3	Taxa de dissipação de energia cinética turbulenta $[m^2/s^3]$
εί	Erro aleatório ou de precisão
φ	Componente média de um propriedade do escoamento
φ'	Componente flutuante de uma propriedade genérica
γ	Razão de calores especificos
κ	Ângulo metade do cruzamento de feixes laser [°]
λ	Comprimento da onda de luz laser [nm]
λ_t	Condutividade térmica [kg – m/s ³ -K]
μ	Viscosidade dinâmica [kg/m-s]
μ_l	Viscosidade molecular [kg/m-s]
μ_t	Viscosidade turbulenta [kg/m-s]
υ	Viscosidade cinemática [m ² /s]
θ	Coordenada circunferencial
$\theta_{\rm p}$	Ângulo de desvio da partícula [°]
ρ	Densidade do fluido [kg/m ³]
= $ au$	Tensor de tensões viscosas [kg/m-s ²]
σ	Desvio padrão de uma distribuição estatística
ω	Freqüência turbulenta [s ⁻¹]

Subscritos

ar	Ar ambiental ou anular
GNV	Gás natural veicular
i,j	Índices direcionais do tensor de tensões